Recitation #9 – Worksheet

SLR Parser Construction
Given the grammar \(G = (\{\text{SheepNoise}\}, \{\text{baa}\}, \text{SheepNoise}, P) \), where \(P \) is:

\[
\text{SheepNoise} \rightarrow \text{SheepNoise} \text{ baa} \\
\text{SheepNoise} \rightarrow \text{baa}
\]

For brevity you can use the short-hand notation:

\[
\text{SN} \rightarrow \text{SN} \text{ baa} \\
\text{SN} \rightarrow \text{baa}
\]

1. Write down the Augmented Grammar \(G' \)

\[
G' = (\{S, \text{SN}\}, \{\text{baa}\}, S, P), \text{ where } P
\]

\[
S \rightarrow \text{SN} \\
\text{SN} \rightarrow \text{SN} \text{ baa} \\
\text{SN} \rightarrow \text{baa}
\]

2. What are the LR(0) items for production \(\text{SN} \rightarrow \text{SN} \text{ baa} \)?

\[
\{ \text{SN} \rightarrow \text{SN} \text{ baa}, \text{SN} \rightarrow \text{SN} \text{ baa}, \text{SN} \rightarrow \text{SN} \text{ baa} \}
\]

3. Calculate \(\text{CLOSURE}(I) \) for \(I = \{S \rightarrow \text{SN}, \text{SN} \rightarrow \text{SN} \text{ baa}\} \). What are the Kernel Items?

- \(\text{CLOSURE}([S \rightarrow \text{SN}, \text{SN} \rightarrow \text{SN} \text{ baa}]) = [S \rightarrow \text{SN}, \text{SN} \rightarrow \text{SN} \text{ baa}] \)
- Because \(S \rightarrow \text{SN} \) is in CLOSURE, add \(\text{SN} \rightarrow \text{SN} \text{ baa} \) and \(\text{SN} \rightarrow \text{baa} \).
- Nothing to be done for \(\text{SN} \rightarrow \text{SN} \text{ baa} \) and \(\text{SN} \rightarrow \text{baa} \), because terminal follows after dot.
- Nothing to be done for \(\text{SN} \rightarrow \text{SN} \text{ baa} \), because rules deriving from \(\text{SN} \) were already added.
- \(\text{CLOSURE}([S \rightarrow \text{SN}, \text{SN} \rightarrow \text{SN} \text{ baa}]) = [S \rightarrow \text{SN}, \text{SN} \rightarrow \text{SN} \text{ baa}]
\]

Kernel Items

Nonkernel Items
4. Calculate $\text{GOTO}(I, X)$ where $I = \{S \rightarrow SN, SN \rightarrow SN \cdot baa\}$ and $X = baa$.
 - $\text{GOTO}(\{S \rightarrow SN, SN \rightarrow SN \cdot baa\}, baa)$
 - “baa” is immediately to the right of the dot for $SN \rightarrow SN \cdot baa$
 - Calculate $\text{CLOSURE}(\{SN \rightarrow SN \cdot baa\}) = \text{GOTO}(\{S \rightarrow SN, SN \rightarrow SN \cdot baa\}, baa) = \{SN \rightarrow SN \cdot baa\}$

5. Construct the **Canonical LR(0) Collection** using the following algorithm:

   ```
   void items($G'$) {
      C = CLOSURE([S' -> S]);
      repeat
         for ( each set of items $I$ in C )
            for ( each grammar symbol $X$ )
               if ( $\text{GOTO}(I, X)$ is not empty and not in C )
                  add $\text{GOTO}(I, X)$ to C;
         until no new sets of items are added to C on a round;
   }
   ```

 - $C = \text{CLOSURE}(\{S \rightarrow SN\})$
 - \rightarrow Add $I_0 = \{S \rightarrow SN, SN \rightarrow SN \cdot baa, SN \rightarrow baa\}$ to C
 - **Round 1:** For set I_0
 - Grammar symbol S:
 - $\text{GOTO}(I_0, S) = \emptyset$, because S is not to the right of any dot
 - Grammar symbol SN:
 - $\text{GOTO}(I_0, SN) = CLOSURE(\{S \rightarrow SN \cdot baa\}) = \{S \rightarrow SN \cdot baa\}$
 - \rightarrow Add $I_1 = \{S \rightarrow SN \cdot baa, SN \rightarrow baa\}$ to C
 - Grammar symbol “baa”:
 - $\text{GOTO}(I_0, baa) = CLOSURE(\{SN \rightarrow baa\}) = \{SN \rightarrow baa\}$
 - \rightarrow Add $I_2 = \{SN \rightarrow baa\}$ to C
 - **Round 2:** For set I_1
 - Grammar symbol S:
 - $\text{GOTO}(I_1, S) = \emptyset$, because S is not to the right of any dot
 - Grammar symbol SN:
GOTO(I₁, SN) = ∅, because SN is not to the right of any dot

- Grammar symbol “baa”:
 GOTO(I₁, baa) =
 CLOSURE({SN → SN baa•}) = {SN → SN baa•}
 → Add I₁ = {SN → SN baa•} to C

- Round 2: For set I₂
 - GOTO(I₂, S) = ∅
 - GOTO(I₂, SN) = ∅
 - GOTO(I₂, baa) = ∅

- Round 3: For set I₃
 - GOTO(I₃, S) = ∅
 - GOTO(I₃, SN) = ∅
 - GOTO(I₃, baa) = ∅

- C = {I₀, I₁, I₂, I₃} = {{S → SN, SN → SN baa, SN → baa},
 {S → SN•, SN → SN• baa}, {SN → baa•}, {SN → SN baa•}}

6. Draw the resulting LR(0) Automaton.
 - Because S → SN• is in I₁, add arc GOTO(I₁, $) = ACCEPT
7. Construct the **SLR-Parsing Table** using the following algorithm

1. Construct \(G' = \{I_0, I_1, \ldots, I_n\} \), the collection of sets of LR(0) items for \(G' \).
2. State \(i \) is constructed from \(I_i \). The parsing actions for state \(i \) are determined as follows:
 a. If \([A \rightarrow \alpha a]\) is in \(I_i \) and \(\text{GOTO}(I_i, a) = I_j \), then set \(\text{ACTION}[i, a] \) to “shift \(j \).” Here \(a \) must be a terminal.
 b. If \([A \rightarrow \alpha]\) is in \(I_i \), then set \(\text{ACTION}[i, a] \) to “reduce \(A \rightarrow \alpha \)” for all \(a \) in \(\text{FOLLOW}(A) \); here \(A \) may not be \(S' \).
 c. If \([S' \rightarrow \alpha]\) is in \(I_i \), then set \(\text{ACTION}[i, S'] \) to “accept.”

If any conflicting actions result from the above rules, we say the grammar is not SLR(1). The algorithm fails to produce a parser in this case.

<table>
<thead>
<tr>
<th>STATE</th>
<th>ACTION</th>
<th>$</th>
<th>GOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Shift 2</td>
<td>$</td>
<td>0, S</td>
</tr>
<tr>
<td>1</td>
<td>Shift 3</td>
<td>Accept</td>
<td>1, S</td>
</tr>
<tr>
<td>2</td>
<td>Reduce (SN \rightarrow baa)</td>
<td>Reduce (SN \rightarrow baa)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Reduce (SN \rightarrow SN baa)</td>
<td>Reduce (SN \rightarrow SN baa)</td>
<td></td>
</tr>
</tbody>
</table>

- Calculate FOLLOW sets:
 - \(\text{FOLLOW}(S) = \{ S \} \)
 - \(\text{FOLLOW}(SN) = \{ S, baa \} \)
- GOTO columns can be taken from Canonical LR(0) collection or automaton
- Calculation of ACTION cells:
 - For state 0:
 - Rule (a) applies because \(SN \rightarrow baa \) is part of \(I_0 \rightarrow \text{GOTO}(I_0, baa) = I_2 \rightarrow \text{ACTION}(0, baa) = \text{"Shift 2"} \)
 - For state 1:
 - Rule (a) applies because \(SN \rightarrow SN baa \) is part of \(I_1 \rightarrow \text{GOTO}(I_1, baa) = I_3 \rightarrow \text{ACTION}(1, baa) = \text{"Shift 3"} \)
 - Rule (c) applies because \(S \rightarrow SN \) is part of \(I_1 \rightarrow \text{ACTION}(1, S) = \text{ACCEPT} \)
 - For state 2:
 - Rule (b) applies because \(SN \rightarrow baa \) is part of \(I_2 \rightarrow \text{FOLLOW}(SN) = \{ S, baa \} \rightarrow \text{ACTION}(2, S) = \text{ACTION}(2, baa) = \text{"Reduce \(SN \rightarrow baa \)"} \)
 - For state 3:
 - Rule (b) applies because \(SN \rightarrow SN baa \) is part of \(I_3 \rightarrow \text{FOLLOW}(SN) = \{ S, baa \} \rightarrow \text{ACTION}(3, S) = \text{ACTION}(3, baa) = \text{"Reduce \(SN \rightarrow SN baa \)"} \)
8. Is this grammar SLR?
 Yes, because there are no shift/reduce or reduce/reduce conflicts in the parsing table.

9. Show me the actions of the resulting parser for the input string “baa baa baa baa” (bbbb)

<table>
<thead>
<tr>
<th></th>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>bbbb$</td>
<td>Shift 2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0 b 2</td>
<td>bbb$</td>
<td>Reduce $SN \rightarrow baa$</td>
<td>$SN \rightarrow baa$</td>
</tr>
<tr>
<td>3</td>
<td>0 SN 1</td>
<td>bbb$</td>
<td>Shift 3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0 SN 1 b 3</td>
<td>bb$</td>
<td>Reduce $SN \rightarrow SN baa$</td>
<td>$SN \rightarrow SN baa$</td>
</tr>
<tr>
<td>5</td>
<td>0 SN 1</td>
<td>bb$</td>
<td>Shift 3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0 SN 1 b 3</td>
<td>b$</td>
<td>Reduce $SN \rightarrow SN baa$</td>
<td>$SN \rightarrow SN baa$</td>
</tr>
<tr>
<td>7</td>
<td>0 SN 1</td>
<td>b$</td>
<td>Shift 3</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0 SN 1 b 3</td>
<td>$ $</td>
<td>Reduce $SN \rightarrow SN baa$</td>
<td>$SN \rightarrow SN baa$</td>
</tr>
<tr>
<td>9</td>
<td>0 SN 1</td>
<td>$ $</td>
<td>Accept</td>
<td></td>
</tr>
</tbody>
</table>

- At line (1) the SLR parser is in state 0, the initial state with no grammar symbols, and with “baa” the first input symbol
- ACTION(0, baa) = “Shift 2” meaning shift by pushing “baa” followed by state 2 onto the stack
- “baa” becomes the new input symbol in line (2).
- ACTION(2, baa) = “Reduce $SN \rightarrow baa$”. The state 2 and “baa” are then popped off the stack.
- SN is pushed onto the stack.
- Since state 0 is exposed and GOTO(0, SN) = 1, push state 1 onto the stack
- ...