
1

02/03/2010

Recitation #3

Administrative
 Any questions on lecture content?

 Last submission opportunity for Assignment 1a is tonight at 11:59 p.m. (for 20% off)

 Assignment 1b is due February 8th @ 11:59

 Assignment 2 is due February 10th @ 11:59

 Check your Knights email!

 Discussion forum on WebCourses is good interaction and problem solving tool

Assignment 1b
 This builds on assignment 1a, so you should make sure that you get that done

Assignment 2
 Refer to Recitation #2  assignment was explained there quite explicitly

Worksheet
 An alphabet is a finite set of symbols (usually denoted by  (sigma)), e.g. {0,1,2,3}  is the

alphabet only containing the numbers 0 – 3; these symbols can be meaningful or abstract; e.g.

ASCII, Unicode, English alphabet

 A string (= word = sentence) over an alphabet is a finite sequence of symbols drawn from the

alphabet. All strings of an alphabet are denoted by * , e.g.

Alphabet Strings *

{0,1,2,3}  0, 012, 22223, 2131 …  , 0, 1, 2, 3, 00, 01, 02, …

{ , , ,..., }a b c z  remo, computer, house …  , a, b, c, …

 Length of a string s is written as s ; the empty string ( or ) has length 0

 A language is any countable set of strings over some alphabet, e.g. the language

{a, aardvark, aback, ..., azimuth, azure} *L   is the set of all word in the dictionary

starting with a lower-case “a” and only consisting of lower-case letters, i.e. the alphabet of the

language is

 Regular Expressions (see recitation #2) describe a set of strings over an alphabet, i.e. regular

expressions describe a language, e.g. (|)*a b describes the language consisting of all strings

with any number of a’s and b’s  extended regular expressions used in Flex:

o Character class []abc is shorthand for (| |)a b c

o Ranges []a d is shorthand for (| | |)a b c d

o “.” Matches any character but newline

{ , , ,..., }a b c z 

2

o ^ is beginning of line, but [^]s is any one character not in string s, $ is end of line

o { , }r m n between m and n occurrences of r

 Deterministic Finite Automata (DFA)

o Formalism for recognizing strings of a language  say “yes” or “no”

o Accepts input string x if and only if there is some path in the graph from the start state

to one of the accepting states, such that the symbols along the path spell out x

o A language L is regular if it is the language accepted by some DFA (or can be expressed

by some regular expression)

o Consists of

 A finite set of states (usually {1,2,3}Q )

 An input alphabet ({[0 9]}A Za z    )

 A transition function ()

 A start state (0 {1}q Q )

 A set of final states ({3}F Q )

o Graphical representation of DFA’s

 Nodes = states

 Arcs represent transition function

 Arrow to the start state

 For each state, and for each symbol of its input alphabet exactly one edge with

that symbol leaving that state.

 Final states indicated by double circle

 Regular Grammar

o Once we know how to express patterns using regular expressions, we would like to find

a way to generate all possible strings

 Formal definition: : (, , ,)G V P S 

o V is a finite set, each element is called a non-terminal character (variable)

o  is a set of terminals, disjoint from V , the alphabet

o P are production rules with a single non-terminal on the left side and a single

terminal or single terminal followed by a single nonterminal on the right side

(right-linear grammar)

o S is the start variable used to represent the whole program. S V .

o All production rules of the form (right-linear grammar)

B  a , where B is a non-terminal and a is terminal

B  aC

B  

o For every left-linear grammar there exists an equivalent right-linear grammar

o Don’t mix left and right regular rules, resulting grammar might not be regular!

S  aA

3

A  Sb

S  

Generates n na b , which is not regular!

Context-Free Grammar
 Some languages are non-regular

o Intuitively, regular languages “cannot count” to arbitrarily high integers

o e.g. {0 1 | 1}n nL n  , i.e. 01, 0011, 00001111, …

o e.g. { | {(,)}*}L w w  and w is balanced, i.e. balanced parenthesis expressions, e.g.

(), ()(). (()), (()()), …

o  Context-free languages

 Finite automata have only finite amount of memory (in form of states) and cannot distinguish

infinitely many strings, e.g. for {0 1 | 1}n nL n  a finite automaton must remember how many

a's it has read when it starts reading b's. Thus it must be in different states when it has read

different number of a's and starts reading the first b. But any finite automaton has only finite

number of states. Thus there is no way for a finite automaton to remember how many a's it has

read for all possible strings n na b

 Context-free grammar is regular grammar + allows recursion

 Formal definition: (, , ,)G V P S 

o V is a finite set, each element is called a non-terminal character (variable)

o  is a set of terminals, disjoint from V , the alphabet

{ , , ,..., , ,..., ,0,...,9}a b c z A Z 

Alphabet

Symbols

Consists
Of

Strings


a

dfaddaf
while

...

Over

Language

do
while

function9
….

Set Of

Regular
Expression

Describes a

letter = []

digit = [0 9]

id = letter(letter | digit)*

A Za z 



Regular
Grammar

letter A | B | ... | Z | a | ... | z

digit 0 | 1 | ... | 9

id letter rest

rest letter rest | digit rest | 









Finite State
Automata

Equivalent
To

2

0 1

digit

letter or
digit

letter or
digit

4

o P is a relation from V to ()*V  such that ()*: (,)w V V w P    . These are

called production or rewrite rules (finite set).

o S is the start variable used to represent the whole program. S V .

 For n na b :

S  aSb

S  ab

 For well-formed parentheses:

S  SS

S  (S)

S  ()

e.g. Starting with S, and applying the rules, one can construct:

S → SS → SSS → (S)SS → ((S))SS → ((SS))S(S)

→ ((()S))S(S) → ((()()))S(S) → ((()()))()(S)

→ ((()()))()(())

 For syntax analysis we need something more powerful  context-free languages

 Dr. Hughes was starting to explain grammars in class

