
1

01/27/2010

Recitation #2

Administrative

 Any questions on lecture content?

 Wiki page on installing Eclipse on Windows/Linux/MacOS

 Lab notes will be uploaded in the same location:

http://mclserver.eecs.ucf.edu/trac/rpillat/wiki/COP3402Spring2011

 Assignment #2 posted by Dr. Hughes, due February 10th, 11:59 p.m.

Assignment 1

 Some Pascal peculiarities:

o Interesting comparison of Pascal and C:

http://en.wikipedia.org/wiki/Comparison_of_Pascal_and_C

o Arrays

 Indices traditionally starting at 1, unless you specify a custom range like [0..9]

instead of [1..10], Pascal can use any ordinal type as array index in C/C++

always starting at 0

 Packed array are string array of fixed length

o i = ord(c) of character c gives decimal ASCII code (see ASCII table below), c =

chr(i) does the opposite

o routines that don’t return a value are called procedure k(q: integer);

o routines that do return a value are functions: function f(x, y: integer):

integer;

 Pascal C Equivalent C++ Equivalent

Variable Declaration var a : integer int a int a

Fixed-length String packed array[]

of char

char[] std::string

Type definition type typedef typedef

Comments { … } , (* … *) /* … */ //, /* … */

Blocks begin … end { … } { … }

Enumeration type type color = (r,

g, b);

enum color {r, g,

b};

enum color {r,

g, b};

Arrays var a :

array[0..9] of

integer

int a[10] int a[10]

Equality Test = == ==

Assignment Operator := = =

Printout writeln printf std::cout

http://mclserver.eecs.ucf.edu/trac/rpillat/wiki/COP3402Spring2011
http://en.wikipedia.org/wiki/Comparison_of_Pascal_and_C

2

 Biggest problem area in reading the code is how they handle numbers:

Context-Free Grammar

 Dr. Hughes gave you the Pascal-S grammar in EBNF form

 Necessary for syntactic analysis

 Syntax of programming language constructs can be specified by context-free grammars

 Grammars are described by EBNF (Extended Backus Naur Form) notation see Recitation #1

 Parser can be generated automatically from EBNF

 Go through some of the grammar and explain

Assignment 2

 From Dr. Hughes website:

“Starting with pascal.lex, change the rules in my regular expressions to accommodate exponents

in numbers. Note: An integer followed by an exponent is a real.

Change it to include // and %, as you did in Assign#1. I already did the comments, except for

directives. While you must just submit the modified grammar, I strongly recommend you

download FLEX and try it. That's what we will do for checking your changes.”

 Flex

o http://flex.sourceforge.net/ for source,

http://gnuwin32.sourceforge.net/packages/flex.htm for Windows executable)

o Concise language to automatically generate source code for lexical analyzers / parsers

o The description is in the form of pairs of regular expressions and C code, called rules.

Flex generates a C source file

o Flex++ is a variant of Flex that generates C++ code

o Format of .lex file:
 definitions

Reading an integer
number

Found a “.” Could be
subrange or real.

Just a subrange

Reading a floating-
point number (ignoring

the dot for now)

If there were any
numbers after “.”

adjust number.

Scientific Notation

The variable “e” keeps track of how many positions
the decimal point has to move. “e” can change in this

code or in function readscale.

http://flex.sourceforge.net/
http://gnuwin32.sourceforge.net/packages/flex.htm

3

 %%

 rules

 %%

 user code

o Is usually used as input for syntactic analyzer, like YACC or BISON
o Demo code generation on computer

 Regular Expressions

o Expressions that describe a set of strings

o Equivalent to all strings a Deterministic Finite Automata (DFA) can recognize

o Very easy to generate recognition code as DFA

o See reference sheet on back of assignment sheet

o For example:

 (a|b)* denotes the set of all strings with no symbols other than a and b,

including the empty string: {ε, a, b, aa, ab, ba, bb, aaa, ...}

 ab*c? denotes the set of strings starting with a, then zero or more bs and

finally optionally a c: {a, ac, ab, abc, abb, abbc, ...}

 ^[hc]at matches "hat" and "cat", but only at the beginning of the string or

line

 (^[1-9]{1}$|^[1-4]{1}[0-9]{1}$|^50$) is any number from 1 to

50 inclusive

Is equivalent to: 1*0(1|01*0)*

4

	Recitation #2
	Administrative
	Assignment 1
	Context-Free Grammar
	Assignment 2

